Log In | Sign Up
Preparing Questions...
Interactive, AI-guided solutions that stick
Given an array of integers nums and an integer target, return indices of the two numbers such that they add up to target. You may assume that each input would have exactly one solution, and you may not use the same element twice. You can return the answer in any order.
You are given two non-empty linked lists representing two non-negative integers. The digits are stored in reverse order, and each of their nodes contains a single digit. Add the two numbers and return the sum as a linked list. You may assume the two numbers do not contain any leading zero, except the number 0 itself.
Given an integer array nums sorted in non-decreasing order, remove the duplicates in-place such that each unique element appears only once. The relative order of the elements should be kept the same. Then return the number of unique elements in nums. Consider the number of unique elements of nums be k, to get accepted, you need to do the following things:
Given an integer array nums and an integer val, remove all occurrences of val in nums in-place. The order of the elements may be changed. Then return the number of elements in nums which are not equal to val. Consider the number of elements in nums which are not equal to val be k, to get accepted, you need to do the following things:
Given two strings needle and haystack, return the index of the first occurrence of needle in haystack, or -1 if needle is not part of haystack.
Given two integers dividend and divisor, divide two integers without using multiplication, division, and mod operator. The integer division should truncate toward zero, which means losing its fractional part. For example, 8.345 would be truncated to 8, and -2.7335 would be truncated to -2. Return the quotient after dividing dividend by divisor. Note: Assume we are dealing with an environment that could only store integers within the 32-bit signed integer range: [-231, 231 - 1]. For this problem, if the quotient is strictly greater than 231 - 1, then return 231 - 1, and if the quotient is strictly less than -231, then return -231.
You are given a string s and an array of strings words. All the strings of words are of the same length. A concatenated substring in s is a substring that contains all the strings of any permutation of words concatenated.
A permutation of an array of integers is an arrangement of its members into a sequence or linear order.
Given a string containing just the characters '(' and ')', return the length of the longest valid (well-formed) parentheses substring.
There is an integer array nums sorted in ascending order (with distinct values). Prior to being passed to your function, nums is possibly rotated at an unknown pivot index k (1 <= k < nums.length) such that the resulting array is [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]] (0-indexed). For example, [0,1,2,4,5,6,7] might be rotated at pivot index 3 and become [4,5,6,7,0,1,2]. Given the array nums after the possible rotation and an integer target, return the index of target if it is in nums, or -1 if it is not in nums. You must write an algorithm with O(log n) runtime complexity.
Given an array of integers nums sorted in non-decreasing order, find the starting and ending position of a given target value. If target is not found in the array, return [-1, -1]. You must write an algorithm with O(log n) runtime complexity.
Given a sorted array of distinct integers and a target value, return the index if the target is found. If not, return the index where it would be if it were inserted in order. You must write an algorithm with O(log n) runtime complexity.